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Abstract: The recent progress in absorbing boundary
conditions (ABCs),especially Berenger’s perfectly matched
layer (PML), promises to be very attractive for microwave
circuit and packaging full–wave analysis using the FDTD
method. However, in waveguides, multimodal and disper-
sive waves exist, which makes it difficult to minimize the
error from absorbing boundary reflection. Several stud-
ies have shown that no single ABC, including the PML, is
effective in absorbing energy having widely varying trans-
verse distributions and group velocities. The possibility of
excitation of evanescent modes by input spectral content
below the cutoff frequency complicates the design of the
ABC. In this paper, an efficient and simple method, the
geometry rearrangement technique (GRT), is implemented
to minimize the boundary truncation error in a waveguide.
Numerical illustration of the propagation constant in a rect-
angular waveguide, terminated with Mur’s first–order ABC,
demonstrates the effectiveness of GRT in correcting the
ABC–induced reflection error for waveguide problems.

1. Introduction
Shieded waveguide structures with slots, geometrical

and/or material discontinuities have been of interest in inte-
grated circuit and antenna applications over a long period.
The FDTD method is considered to be appropriate for solv-
ing waveguide problems, especially if complex geometrical
and material configurations are involved. In analyzing the
EM wave propagation in waveguides, the FDTD technique
approximates Maxwell’s equations using finite differences
over a computational domain truncated by ABCs. A ma-
jor problem in such analysis is the accurate termination of
the guided wave structure extending beyond the FDTD grid
boundaries. The propagation in a waveguide can be multi-
modal and very dispersive, and the ABC used to terminate
the waveguide must be able to absorb energy having widely
varying transverse distributions and group velocities. The
problem of evanescent mode excitation by a narrow pulse

complicates the analysis. This makes it difficult to accu-
rately implement the FDTD method in waveguide problems.
Although recent advancements in ABC, such as Higdon’s
ABC [1] and the PML [2] significantly decrease the residual
reflection in free space propagation, they are much less ef-
fective in waveguide problems. For example, a complicated
hybrid formulation involving Higdon’s ABC and several
layers of PML has been shown to absorb energy only over
select frequencies [3].

In this paper, we show that a very simple Mur’s first-
order ABC can be used effectively for waveguide analysis,
because the boundary reflection error for propagatingmodes
can be corrected accurately. We employ a superposition of
two sub-problems, formulated by a geometrical rearrange-
ment of the absorbing boundary, as described in [4] for
microstrip transmission lines. Unlike the microstrip guided
wave mode, the rectangular waveguide modes have varying
transverse spatial distributionsand smaller mode separation.
Also, pulse distortion and dispersion are much more severe
in waveguides than in microstrip problems. The correction
procedure, termed as the geometry rearrangement technique
(GRT), is very similar to how one cancels out reference plane
calibration errors in waveguide material measurements by
using two different sample lengths.

After introducing our excitation choice, we describe
GRT and show how one can estimate the reflection from
absorbing boundary. The next step is to use this reflection
coefficient to correct the propagation constant in a rectan-
gular waveguide. Although, for simplicity, we have chosen
Mur’s first-order ABC in the FDTD implementation, GRT
can correct the error introduced by any ABC employed.
The computed results for the waveguide indicate that the
far-end longitudinal boundary can be located as close as 5
cells beyond the appropriate field sampling location, and
yet, accurate results can be obtained when compared with
the standard formula for the propagation constant. The
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conventional FDTD without GRT gives much less acurate
solution.

2. Methodology

2.1. Excitation Choice
To implement the FDTD method in waveguide prob-

lems, we should choose an excitation which models the
actual physical fields in spatial distribution and time de-
pendence. Here, we employ the Hanning window func-
tion to alter the rising slope of the excitation from zero to
steady state. This modified excitation has less of its spec-
trum located below the cutoff frequency and can arrive at
steady state with minimal transient interference [5]. The
monochromatic excitation for the dominant TE10 mode in a
rectangular waveguide, modified by the Hanning window,
is given by

Ez =

�
sin(�x

W
) sin(2�fmt)U (t); T < t

sin(�x
W
) sin(2�fmt)( 1

2 �
1
2 cos(�t

T
))U (t); T > t

(1)
where T , the rise time, is chosen to be 10 cycles of the exci-
tation frequency, fm, z and x are transverse coordinates (y
is longitudinal) in the waveguide, W is the larger dimension
of the cross-section, andU (t) is the Heaviside function. The
transient waveform of this modified monochromatic excita-
tion is shown in Fig. 1. It can be seen that the rise to steady
state is gradual, which minimizes the spectrum located be-
low the cutoff frequency. The pulse can be modified to any
other mode by including the appropriate modal transverse
distribution f(x; z) instead of sin(�x

W
) in (1). If one does

not know an approximate transverse field distribution, a 2D
Laplace’s equation can be solved for the transverse field
subject to appropriate boundary conditions for the mode
under consideration.
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Figure 1: Transient waveform of a monochromatic excitation
modified by the Hanning window [5].

2.2. Geometry Rearrangement Technique
The tangential field on the absorbing boundary, intended

to simulate outgoing waves at the terminal planes of an
FDTD grid, obeys the one-dimensional wave equation for
propagation along the direction normal to the mesh wall.
The wave will thus approach the end wall at normal in-
cidence, with the dominant mode phase velocity, vp. A
commonly used first–order solution to the “one-way” wave
equation is given by the Mur’s ABC [6]:

En
z = En�1

z�1 +
vp�t� �y

vp�t+ �y
(En�1

z � En
z�1) (2)

where Ez represents the tangential electric field on the
boundary, and Ez�1 represents the field a distance of one
node inside the boundary. In waveguides, conventional
FDTD implementation with the ABC in (2) introduces un-
acceptable error caused by reflection. Next, we show how
GRT can correct such error.
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Figure 2: (a) Conventional field sampling, (b) far-end boundary
moved closer by ∆L.

In the conventional FDTD method, the frequency-
dependent parameters such as the modal phase constant are
calculated from the Fourier-transformed voltage (or electric
field) at two different locations on a single waveguide. In
order to reduce the influence of boundary reflection, this
waveguide needs to be long enough such that, ideally, only
forward traveling waves exist. While there is no unique
definition for the voltage in single conductor waveguides,
we compute voltage at the i-th port as the line integral over
a cross-section (see Fig. 2):

Vi =

Z b

0
Ez(

a

2
; yi; z)dz: (3)

WithV1 and V2 denoting transforms of the FDTD-computed
voltage at the points P1 and P2 (see Fig. 2), we have

e�
(!)∆L =
V1

V2
(4)

where ∆L = L2 � L1; 
(!) = �(!) + j�(!); �(!) =
1

∆L arctan 6
�
V1=V2

�
, and ! is the angular frequency. Note

that Li is the distance of sampling point Pi, measured from
the far–end boundary, and not the source plane.
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Eq. (4) neglects the reflection error induced by the
imperfect ABC. We now examine how such error influ-
ences the computed propagation constant. We treat the
far-end wall (Fig. 2) as a lumped load at the end of the
waveguide, characterized by a frequency-dependent reflec-
tion coefficient Γf . Likewise, the reflection coefficient at
the source-end boundary is Γs. The voltages V1 and V2 are
then given by the superposition of longitudinally propagat-
ing incident wave and multiple reflections from source and
far-end boundaries, and may be expressed as

V1 = V1in
1 + Γf e�2
̃(!)L1

1� ΓfΓse�2
̃(!)L
(5)

V2 = V2in
1 + Γf e�2
̃(!)L2

1� ΓfΓse�2
̃(!)L
(6)

where V1in, V2in are incident voltages at P1, P2, respec-
tively, L is the length of the line between the boundaries
(Fig. 2), and 
̃(!) is the true propagation constant. From
eqs. (4), (5) and (6), we obtain

e�
(!)∆L
=

V1in

V2in

1 + Γf e�2
̃(!)L1

1 + Γf e�2
̃(!)L2
: (7)

The true propagation constant should be calculated from

e�
̃(!)∆L
�

V1in

V2in
(8)

instead of (4) or (7), which are corrupted by boundary re-
flection. Eq. (8) follows from (7) if L1 = L2. How to
realize this condition is the basis for GRT. We solve two
identical problems with different boundary locations, as
shown in Fig. 2, where the far–end boundary in the second
problem (Fig. 2(b)) is brought closer to the source plane
than in (Fig. 2(a)) by a distance ∆L. This effectively re-
places the sampling pointP2 with P3 such that V3in = V2in,
L3 = L2 � ∆L = L1. Then, using (8), we obtain

e�
̃(!)∆L =
V1

V3

1� ΓfΓse�2
̃(!)L

1� ΓfΓse�2
̃(!)(L�∆L)

1 + Γfe�2
̃(!)L3

1 + Γfe�2
̃(!)L1
:

(9)
Neglecting the composite reflection ΓfΓs, which is small
compared to unity (e.g., see Fig. 3), and using L3 = L1, it
follows that

e�
̃(!)∆L =
V1

V3
: (10)

Thus, we have essentially sampled voltage V3 instead of
V2 to obtain (8) from (7), and thereby correct the negative
influence of dominant boundary reflection on calculation of
the propagation constant. Accurate propagation constant
can thus be obtained by keeping the boundary as close as 1
to 5 cell(s) from the far-end sampling location [4].

2.3. Calculating the Boundary Reflection
GRT can be used to estimate the boundary reflection

caused by an imperfect ABC. With reference to Fig. 2,
let C = V1=V2, and G = V1=V3, with V3 calculated on the
second line at P3. Then, we obtain from (4), (5) and (6),

C = G
1 + Γf e�2
̃(!)L1

1 + Γf e�2
̃(!)L2
= G

1 + Γf G
�

2L1
∆L

�

1 + Γf G
�

2L2
∆L

� : (11)

Solving (11) for Γf , we obtain the reflection coefficient at
the boundary

Γf =
G� C

G

�
2L2
∆L

�
C �G

�
2L1
∆L +1

� : (12)

As an example, we consider a WR90 rectangular waveg-
uide with a = 22:86 mm, b = 10:16 mm. Two waveguides
are simulated, with one 120 cells long and the other 90 cells
long. Both are terminated with Mur’s first-order ABC on
either end. The longer line is simulated to obtain C and the
shorter one, to calculateG. The cell dimensions are given by
∆x = 0:5715 mm, ∆y = 0:3 mm, and ∆z = 1:016 mm (see
Fig. 2 for definition of coordinates). The number of cells
along x and z directions, respectively, is given by Nx = 41
andNz = 11. The other dimensions are: L1 = L3 = 10∆y,
∆L = 30 ∆y, and L2 = 40 ∆y. The magnitude of the Mur’s
first-order boundary reflection coefficient, calculated from
(12), is shown in Fig. 3.
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Figure 3: Reflection from absorbing boundary.

3. Simulation Results

To validate the afore-mentioned methodology, consider
computation of the propagation constant in a uniform, rect-
angular waveguide assumed to be infinite along y direction.
The incident field is a modified monochromatic excitation
of the form in (1) with W = 22:86 mm, and is applied 10
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cells away from the y = 0 plane. The computed phase con-
stant as a function of frequency is plotted in Fig. 4 against a
reference solution calculated from the well-known analyti-
cal formula. The conventional FDTD implementation with
imperfect ABC causes boundary reflection, which translates
to significant numerical error (over 6%). The GRT result is
quite smooth and agrees very well (within 1%) with the for-
mula. The GRT/FDTD implementation employs ∆L = 30
cells and first-order Mur’s ABC on the two longitudinal
boundaries.
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Figure 4: Phase constant of the dominant mode.

4. Summary

In this report, we have applied GRT to reduce the influ-
ence of boundary reflection in the analysis of wave propa-
gation in a rectangular waveguide. It has been shown that
the accuracy of numerical calculation of the propagation
constant can be improved by correcting for the reflection
error ensuing from an imperfect boundary condition. GRT
involves the solution of two sub-problems differing in geom-
etry only in the position of the far-end longitudinal boundary.
The computational requirements of GRT are less than those
of the conventional FDTD implementation, in which the
absorbing boundary needs to be placed far away from the
scattering element to reduce the boundary-scatterer interac-
tion. The real utility of GRT is in the analysis of waveguide
discontinuities and slot radiators. In this case, by solving
two problems differing only in the position of the longitudi-
nal boundary, it is possible to correct the slot admittance, or
the S-parameters of the discontinuity, for the ABC-induced
reflection error. The theory for effecting such correction in
a discontinuity problem is described in [7], [8].
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