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Abstract:  The recent progress in absorbing boundary
conditions (ABCs), especialy Berenger’ s perfectly matched
layer (PML), promises to be very attractive for microwave
circuit and packaging full-wave analysis using the FDTD
method. However, in waveguides, multimodal and disper-
sive waves exist, which makes it difficult to minimize the
error from absorbing boundary reflection. Severd stud-
ies have shown that no single ABC, including the PML, is
effective in absorbing energy having widely varying trans-
verse distributionsand group velocities. The possibility of
excitation of evanescent modes by input spectral content
below the cutoff frequency complicates the design of the
ABC. In this paper, an efficient and simple method, the
geometry rearrangement technique (GRT), is implemented
to minimize the boundary truncation error in a waveguide.
Numerical illustration of the propagation constant in arect-
angular waveguide, terminated with Mur’sfirst—order ABC,
demonstrates the effectiveness of GRT in correcting the
ABC-induced reflection error for waveguide problems.

1. Introduction

Shieded waveguide structures with slots, geometrical
and/or material discontinuitieshave been of interestin inte-
grated circuit and antenna applications over along period.
The FDTD method is considered to be appropriate for solv-
ing waveguide problems, especially if complex geometrical
and material configurations are involved. In analyzing the
EM wave propagation in waveguides, the FDTD technique
approximates Maxwell’s equations using finite differences
over a computational domain truncated by ABCs. A ma
jor problem in such analysis is the accurate termination of
the guided wave structure extending beyond the FDTD grid
boundaries. The propagationin a waveguide can be multi-
modal and very dispersive, and the ABC used to terminate
the waveguide must be able to absorb energy having widely
varying transverse distributions and group velocities. The
problem of evanescent mode excitation by a narrow pulse

complicates the analysis. This makes it difficult to accu-
rately implement the FDTD method i n waveguide problems.
Although recent advancements in ABC, such as Higdon's
ABC[1] andthe PML [2] significantly decrease theresidual
reflection in free space propagation, they are much less ef-
fectiveinwaveguide problems. For example, acomplicated
hybrid formulation involving Higdon's ABC and several
layers of PML has been shown to absorb energy only over
select frequencies[3].

In this paper, we show that a very simple Mur’s first-
order ABC can be used effectively for waveguide analysis,
because theboundary reflection error for propagating modes
can be corrected accurately. We employ a superposition of
two sub-problems, formulated by a geometrical rearrange-
ment of the absorbing boundary, as described in [4] for
microstrip transmission lines. Unlikethe microstrip guided
wave mode, the rectangular waveguide modes have varying
transversespatia distributionsand smaller mode separation.
Also, pulse distortion and dispersion are much more severe
in waveguides than in microstrip problems. The correction
procedure, termed asthe geometry rearrangement technique
(GRT), isvery similar to how onecancel sout referenceplane
calibration errors in waveguide material measurements by
using two different sample lengths.

After introducing our excitation choice, we describe
GRT and show how one can estimate the reflection from
absorbing boundary. The next step is to use this reflection
coefficient to correct the propagation constant in a rectan-
gular waveguide. Although, for simplicity, we have chosen
Mur’sfirst-order ABC in the FDTD implementation, GRT
can correct the error introduced by any ABC employed.
The computed results for the waveguide indicate that the
far-end longitudinal boundary can be located as close as 5
cells beyond the appropriate field sampling location, and
yet, accurate results can be obtained when compared with
the standard formula for the propagation constant. The
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conventional FDTD without GRT gives much less acurate
solution.

2. Methodology

2.1. Excitation Choice

To implement the FDTD method in waveguide prob-
lems, we should choose an excitation which models the
actua physical fields in spatia distribution and time de-
pendence. Here, we employ the Hanning window func-
tion to ater the rising slope of the excitation from zero to
steady state. This modified excitation has less of its spec-
trum located below the cutoff frequency and can arrive at
steady state with minimal transient interference [5]. The
monochromatic excitation for the dominant TE;g modein a
rectangular waveguide, modified by the Hanning window,
isgiven by

b SN(ZZ) Sn(27 fot) U (1), T <t
= { Sn(T2)sin(2r fut) (L = Leos(ZNU (1), T >t
y

whereT", therisetime, is chosen to be 10 cycles of the exci-
tation frequency, f,., z and « are transverse coordinates (y
islongitudinal)inthewaveguide, IV isthelarger dimension
of thecross-section, and U (¢) istheHeavisidefunction. The
transient waveform of this modified monochromatic excita-
tionisshowninFig. 1. It can be seen that theriseto steady
stateis gradual, which minimizes the spectrum located be-
low the cutoff frequency. The pulse can be modified to any
other mode by including the appropriate modal transverse
distribution f(z, z) instead of sin({%) in (1). If one does
not know an approximate transverse field distribution, a 2D
Laplace's equation can be solved for the transverse field
subject to appropriate boundary conditions for the mode
under consideration.
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Figure 1: Transient waveform of a monochromatic excitation
modified by the Hanning window [5].

2.2. Geometry Rearrangement Technique

Thetangential field on the absorbing boundary, intended
to simulate outgoing waves a the termina planes of an
FDTD grid, obeys the one-dimensiona wave eguation for
propagation along the direction normal to the mesh wall.
The wave will thus approach the end wall at normal in-
cidence, with the dominant mode phase velocity, v,. A
commonly used first—order solution to the “one-way” wave
equation is given by the Mur's ABC [6]:

n _ rn-—1 Upét_(sy n—1 n

Ez - Ez—l + vpét 4 (Sy(EZ z—l) (2)
where E, represents the tangentia electric field on the
boundary, and £, _; represents the field a distance of one
node inside the boundary. In waveguides, conventional
FDTD implementation with the ABC in (2) introduces un-
acceptable error caused by reflection. Next, we show how
GRT can correct such error.
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Figure 2: (a) Conventional field sampling, (b) far-end boundary
moved closer by AL.

In the conventiond FDTD method, the frequency-
dependent parameters such as themodal phase constant are
calculated from the Fourier-transformed voltage (or electric
field) at two different locations on a single waveguide. In
order to reduce the influence of boundary reflection, this
waveguide needs to be long enough such that, ideally, only
forward traveling waves exist. While there is no unique
definition for the voltage in single conductor waveguides,
we compute voltage at thei-th port as the lineintegral over
across-section (see Fig. 2):

b
w:/ B2 i, 2)dz. 3
0 2

With V1 and V> denoting transforms of the FDTD-computed
voltage at the points P; and P, (see Fig. 2), we have

-
—y(w)AL _ Y1 4

e 7 (4)

where AL = Ly — L1, y(w) = a(w) + jiw), Bw) =
A actanZ [V1/V5], and w isthe angular frequency. Note
that I; isthe distance of sampling point P;, measured from

the far—end boundary, and not the source plane.
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Eg. (4) neglects the reflection error induced by the
imperfect ABC. We now examine how such error influ-
ences the computed propagation constant. We treat the
far-end wall (Fig. 2) as a lumped load at the end of the
waveguide, characterized by a frequency-dependent reflec-
tion coefficient ;. Likewise, the reflection coefficient at
the source-end boundary isT ;. The voltages ; and V, are
then given by the superposition of longitudinally propagat-
ing incident wave and multiple reflections from source and
far-end boundaries, and may be expressed as

14 e @i
1— T e-2WIL

Vi=Vin %)

14T pe=2V@le
mr ©)

1-TMe=27(w)

where Vy;,,, Vo, aeincident voltages at Pi, P», respec-

tively, L isthe length of the line between the boundaries

(Fig. 2), and ¥(w) isthe true propagation constant. From
egs. (4), (5) and (6), we obtain

Vo = Vaip

—y(w)AL _ M 1 + rfe—Z'?(w)Ll (7)
‘ " Vain 14 Tje B

The true propagation constant should be calculated from

e~ T(W)AL — Viin (8
Vain

instead of (4) or (7), which are corrupted by boundary re-
flection. Eqg. (8) follows from (7) if L1 = L,. How to
realize this condition is the basis for GRT. We solve two
identical problems with different boundary locations, as
shown in Fig. 2, where the far—end boundary in the second
problem (Fig. 2(b)) is brought closer to the source plane
than in (Fig. 2(a)) by a distance AL. This effectively re-
placesthe sampling point P, with P3 such that Va;,, = Vaip,
L3 = L, — AL = L;. Then, using (8), we obtain

itenr _ Vi 1-TyFem 2 44 pem2ile
Val—T e 27(@)I=b8L) 1 4 [ e=27(w)ls
9
Neglecting the composite reflection I T, which is small
compared to unity (eg., see Fig. 3), and using L3z = Ly, it
followsthat

e~ V(WAL _ E (10)
V3

Thus, we have essentially sampled voltage V3 instead of
V5 to obtain (8) from (7), and thereby correct the negative
influence of dominant boundary reflection on cal culation of
the propagation constant. Accurate propagation constant
can thus be obtained by keeping the boundary as close as 1
to 5 cell(s) from the far-end sampling location [4].

2.3. Calculatingthe Boundary Reflection

GRT can be used to estimate the boundary reflection
caused by an imperfect ABC. With reference to Fig. 2,
let ¢ = V1/V,, and G = V1 /V3, with V3 calculated on the
second lineat P3. Then, we obtain from (4), (5) and (6),

i (%)
_G1+rfe—2v<w>h 14T G

=TT eren -

(11)

2L,

14T G<E)

Solving (11) for I';, we obtain the reflection coefficient at
the boundary

G-C

Asan example, we consider aWR90 rectangul ar waveg-
uidewitha = 22.86 mm, b = 10.16 mm. Two waveguides
aresimulated, with one 120 cellslong and the other 90 cells
long. Both are terminated with Mur’s first-order ABC on
either end. The longer lineissimulated to obtain C' and the
shorter one, to calculate G. Thecell dimensionsaregiven by
Az = 0.5715mm, Ay = 0.3mm, and Az = 1.016 mm (see
Fig. 2 for definition of coordinates). The number of cells
along x and z directions, respectively, isgivenby N, = 41
and N, = 11. Theotherdimensionsare: L, = Lz = 10Ay,
AL = 30Ay, and L, = 40 Ay. The magnitude of theMur’s
first-order boundary reflection coefficient, calculated from
(12), isshowninFig. 3.
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Figure 3: Reflection from absorbing boundary.

3. Simulation Results

To validate the af ore-mentioned methodol ogy, consider
computation of the propagation constant in a uniform, rect-
angular waveguide assumed to be infinitea ong y direction.
The incident field is a modified monochromatic excitation
of theformin (1) with 11/ = 22.86 mm, and is applied 10
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cellsaway fromthey = 0 plane. The computed phase con-
stant as afunction of frequency isplottedin Fig. 4 against a
reference solution cal culated from the well-known analyti-
ca formula. The conventional FDTD implementation with
imperfect ABC causes boundary reflection, which trand ates
to significant numerical error (over 6%). The GRT resultis
quite smooth and agrees very well (within 1%) with thefor-
mula. The GRT/FDTD implementation employs AL = 30
cells and first-order Mur’s ABC on the two longitudinal
boundaries.

160

-
3
@
T
\

............. Conv. FDTD Solution I

-

o

=)
T

Formula -

GRT Solution Py

Phase Constant (rad/m)

i

@

=]
T

1251

1201

115

110 . .
8.5 9 9.5 10

Frequency (Hz) x 10°

Figure 4: Phase constant of the dominant mode.

4. Summary

In thisreport, we have applied GRT to reduce the influ-
ence of boundary reflection in the analysis of wave propa-
gation in a rectangular waveguide. It has been shown that
the accuracy of numerical calculation of the propagation
congtant can be improved by correcting for the reflection
error ensuing from an imperfect boundary condition. GRT
involvesthe sol ution of two sub-problemsdiffering ingeom-
etry only intheposition of thefar-end | ongitudinal boundary.
The computational requirements of GRT are less than those
of the conventional FDTD implementation, in which the
absorbing boundary needs to be placed far avay from the
scattering element to reduce the boundary-scatterer interac-
tion. Thereal utility of GRT isin theanalysis of waveguide
discontinuities and dot radiators. In this case, by solving
two problemsdiffering only in the position of thelongitudi-
nal boundary, it is possibleto correct the sl ot admittance, or
the S-parameters of the discontinuity, for the ABC-induced
reflection error. The theory for effecting such correction in
adiscontinuity problemisdescribed in[7], [8].

References

[1] R.L.Higdon,“Absorbing boundary conditionsfor dif-
ference approximationsto the multi-dimensional wave

(2]

(3]

[4]

(5]

(6]

[7]

(8]

equations,” Math. Comput., vol. 47, no.176, pp. 437-
459, Oct. 1986.

JP. Berenger, “A perfectly matched layer for the
absorption of electromagnetic waves” J. Comput.
Physics, 114, pp. 185-200, Oct. 1994,

Z. Wu and J. Fang, “Numerical implementation and
performance of perfectly matched layer boundary con-
dition for waveguide structures,” |IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-43, pp. 2676-2683,
Aug. 1995.

K. Naishadham and X. P. Lin, “Minimization of reflec-
tion error caused by absorbing boundary conditionsin
the FDTD simulation of planar transmission lines,
|IEEE Trans. Microwave Theory Tech., vol. MTT-44,
pp. 41-46, Jan. 1996.

D.T. Prescott, and N.V. Shuley, “Reducing solution
time in monochromatic FDTD waveguide simula-
tions” |IEEE Trans. Microwave Theory Tech., vol.
MTT-42, pp. 1582-1584, Aug. 1994.

G. Mur, “Absorbing boundary conditionsfor thefinite
difference approximation of the time domain electro-
magnetic field equations,” |EEE Trans. Electromagn.
Compat., vol. EMC-23, pp. 377-382, Nov. 1981.

X.P.Linand K. Naishadham, “A simpletechniquefor
minimi zation of ABC-inducederrorintheFDTD andl -
ysis of microstrip discontinuities," IEEE Microwave
Guided Wave Let., vol. 4, pp. 402-404, December
1994.

K. Naishadham and X. P. Lin, “Optimum compensa-
tion of open microstrip discontinuitiesusingthe FDTD
method with boundary reflection error cancellation,”
Int. J. Microwave and Millimeter-Wave Computer-
Aided Eng., Special Issue on Time-Domain Modeling
for Microwave Components, vol. 6, no. 1, pp. 47-57,
Jan. 1996.

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



